Algorithms: UNION FIND AND
MINIMUM SPANNING TREES

Alessandro Chiesa, Ola Svensson

=PFL School of Computer and Communication Sciences

Lecture 19, 29.04.2025

Recall: The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

Lecture 19, 29.04.2025

Recall: The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Lecture 19, 29.04.2025

Recall: The Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut (learn the proof)

Lecture 19, 29.04.2025

Recall: The Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut (learn the proof)

Gives a way to verify that the step-by-step calculations of the flow are correct!
Lecture 19, 29.04.2025

Recall: The Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut (learn the proof)

Gives a way to verify that the step-by-step calculations of the flow are correct!
Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Gand f

(<0/
0/16 0/2 0/15 0;15 0/10
G{o/s&o/%—oﬁ%

0/15 0/4 0/6 0/10

Oy

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

(<0/ o—>()
0/16 0/2 0/15 0;15 0/10 0 1 1
G{o/s&o/%—oﬁ% ®<‘ 5 3\871%

0/15 0/4 0/6 0/10 1 6.

S oS S

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

(<0/ o—>()
0/16 0/2 0/15 0;15 0/10 1 1
G{o/s&o/%—oﬁ% ®< 5 3\871%

0/15 0/4 0/6 0/10 1 6.

S oS S

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f Gy

(<0/9—>() —>()
10/10 0/2 10/15 0/15 0/10 1 1

G:éo /5%0 /%—10 /19:9 ®< 5 3\871%
0/15

0/4 0/6 0/10 1 6 0

N oS S

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
4. return f
G and f Gy
0/ 9

10/10 0/2 10/15 0/15 0/10

0/5 0/ 10/10 O<‘
/15 0/4 0/6 0/16 6 0
SO S

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<0/9—>()
10/10 0/2 10/15 0/15 0/10

0/5 0/ 10/10

0/15 0/4 0/6 0/10

Oy

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f Gy

AR 5&
10/10 0/2 #/15 0/15 /10 0
G{o/s&e/%—wﬂ% G<
/15 0/4 6/6 1

0/10

oo

(&)

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<6/9—></l O O
10/10 0/2 3/15 0/15 6/10

0/5 6/%—10/10 @
5/15 0/4 6/6 0/16

ey o O

O
O
©

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<ﬁ/
10/10 0/2 /15 0;15 5/10
G{o/s&e/%—wﬂ%

6/15 0/4 6/6 0/10

oo

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<ﬁ/
10/10 0/2 /15 0;15 5/10
G{o/s&e/%—wﬂ%

6/15 0/4 6/6 0/10

oo

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f
AR 5&
10/10 0/2 4/15 0/15 6/10
4/5 6/ 10/10
6/15 4/4 6/6 4/10
10/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<6/9—></l O O
10/10 0/2 3/15 0/15 6/10

4/5 6/ 10/10 @
5/15 4/4 6/6 4/16

0oy O O

O
O
©

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<6/9—>()
10/10 0/2 3/15 0/15 6/10

4/5 6/ 10/10
5/15 4/4 6/6 4/10

10/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<6/9—>()
10/10 0/2 3/15 0/15 6/10

4/5 6/ 10/10
5/15 4/4 6/6 4/10

10/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f
AR ?\
10/10 1/2 4/15 0/15 7/10
5/5 6/ 10/10
6/15 4/4 6/6 4/10
10/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<7/9—></l O O
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10 @
5/15 4/4 6/6 4/16

0oy O O

O
O
©

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<7/9—>()
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10
5/15 4/4 6/6 4/10

10/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<7/9—>()
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10
5/15 4/4 6/6 4/10

10/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

(<7/9—>()
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10
12/15 4/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<7/9—></l O O
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10 @
12/15 4/4 6/6 10/10

e O O

O
O
©

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<7/9—>()
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10

12/15 4/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<7/9—>()
10/10 1/2 3/15 0/15 7/10

5/5 6/ 10/10

12/15 4/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

(<8/9—>()
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10

13/15 3/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy

,<)<8/9—></l O O
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10 @
13/15 3/4 6/6 10/10

e O O

O
O
©

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<8/9—>()
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10

13/15 3/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f

(<8/9—>()
10/10 2/2 3/15 0/15 8/10

5/5 6/ 10/10

13/15 3/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

(<9/9—>()
10/10 2/2 3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

G and f Gy

,(><9/9—>§l O O
10/10 2/2 3/15 0/15 9/10

5/5 7/ 10/10 @
14/15 2/4 6/6 10/10

16/1M O O

O
O
©

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

(<9/9—>()
10/10 2/2 3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f

(<9/9—>()
10/10 2/2 3/15 0/15 9/10

5/5 7/ 10/10

14/15 2/4 6/6 10/10

16/16

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f
“~

(<9/
)
10/10 2/2 3/15 0 9/10

\J
5/5 7/ 10/10
1

14/15 2/4 6/6 110/10

16/16 '
]

Lecture 19, 29.04.2025

The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

1

2. while exists an augmenting path p in the residual network Gf |No augmenting path, flow of
value 29 and cut of capacity 29
3. augment flow f along p
4

. return f @

Gand f
-~
(<9/9A() — §
Y 3. 9.
10/10 2/2 3/15 0 9/10 1
5/5 7/ Y+—10/10 &10%9
1
14/15 2/4 6/6 110/10 0
16/16 p M
1

Lecture 19, 29.04.2025

Might not terminate. However, if we either take the shortest path or the
fattest path then this will not happen if the capacities are integers
without proof

Lecture 19, 29.04.2025

Might not terminate. However, if we either take the shortest path or the
fattest path then this will not happen if the capacities are integers
without proof

Augmenting path Number of iterations

BFS shortest path < 1 E.-V
-2
Fattest path < E-log(E- V)

Lecture 19, 29.04.2025

Might not terminate. However, if we either take the shortest path or the
fattest path then this will not happen if the capacities are integers
without proof

Augmenting path Number of iterations

BFS shortest path < EE %
-2
Fattest path < E-log(E- V)

» U is the maximum flow value

> Fattest path: choose augmenting path with largest minimum

capacity (bottleneck
Lecture 19, 29.04.9025 y ()

APPLICATIONS OF MAX-FLOW

Lecture 19, 29.04.2025

Bipartite matching

> N students apply for M jobs

¢ swisscom

ehY

ALY T-1-1
!
{

Lecture 19, 29.04.2025

Bipartite matching

> N students apply for M jobs
> Each get several offers

Lecture 19, 29.04.2025

Bipartite matching

> N students apply for M jobs
> Each get several offers
> |s there a way to match all students to jobs? obviously M has to be at least equal to N

Lecture 19, 29.04.2025

Bipartite matching as flow problem

Lecture 19, 29.04.2025

Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t

Lecture 19, 29.04.2025

Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one

Lecture 19, 29.04.2025

Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one
> Direction is from left to right

Lecture 19, 29.04.2025

Bipartite matching as flow problem

» Run the Ford-Fulkerson method

Lecture 19, 29.04.2025

Bipartite matching as flow problem

» Run the Ford-Fulkerson method

Lecture 19, 29.04.2025

Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete

Lecture 19, 29.04.2025

Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete

FELY T-1°)
" E g
oW 2 B 3

Lecture 19, 29.04.2025

Why does it work?

Every matching defines a flow of value equal to the number of edges in
matching

> Put flow 1 on

> Edges of the matching
> Edges from s to matched student nodes
> Edges from matched job nodes to t

> Put flow 0 on all other edges

Works because flow conservation is equivalent to: no student is matched
more than once, no job is matched more than once

Lecture 19, 29.04.2025

Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

Lecture 19, 29.04.2025

Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

So, maximum flow is a maximum matching!

Lecture 19, 29.04.2025

vy v.vvY

You want to travel to a nice location these winter holidays
You need to drive from Lausanne to Geneva airport
Winter season = risk that roads are closed

How many different routes can you take that does not share a common road?

vy v.vvY

s = Lausanne
t = Geneva airport
An edge capacity of 1 in both directions for each road

(make anti-parallel using gadgets)

> max-flow = # edge-disjoint paths

> min-cut = min #roads to be closed so that there is no route from Lausanne to
Geneva airport

DATA STRUCTURES FOR DISJOINT SETS

Lecture 19, 29.04.2025

Disjoint-set data structures

> Also known as “union find"”

> Maintain collection S = {51, ..., Sk} of disjoint dynamic (changing
over time) sets

> Each set is identified by a representative, which is some member of
the set

Doesn’t matter which member is the representative, as long as if we ask for the
representative twice without modifying the set, we get the same answer both
times

Lecture 19, 29.04.2025

Lecture 19, 29.04.2025

MAKE-SET(x): make a new set S; = {x}, and add S; to S

Lecture 19, 29.04.2025

MAKE-SET(x): make a new set S; = {x}, and add S; to S

UNION(x, y): if x € Sy,y € S, then S =S — S, — S, U{S, US,}

> Representative of new set is any member in S, U S, often the
representative of one of S, and S,

> Destroys S, and S, (since sets must be disjoint)

Lecture 19, 29.04.2025

MAKE-SET(x): make a new set S; = {x}, and add S; to S

UNION(x, y): if x € Sy,y € S, then S =S — S, — S, U{S, US,}

> Representative of new set is any member in S, U S, often the
representative of one of S, and S,

> Destroys S, and S, (since sets must be disjoint)

FIND(x): return representative of set containing x

Lecture 19, 29.04.2025

Example application: connected components

For a graph G = (V, E), vertices u, v are in same connected component
if and only if there is a path between them.

> Connected components partition vertices into equivalence classes

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

N <

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S
- @<I
Sg

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S
- @<I
Sg

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S
- @<I
Sg

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

Lecture 19, 29.04.2025

CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

Lecture 19, 29.04.2025

Linked list representation

Lecture 19, 29.04.2025

List representation

> Each set is a single linked list represented by a set object that has

> a pointer to the head of the list (assumed to be the representative
> a pointer to the tail of the list

> Each object in the list has attributes for the set member, pointer to
the set object and next

(@
i $2

Lecture 19, 29.04.2025

Make-Set and Find

@
Sy $2

Lecture 19, 29.04.2025

Make-Set and Find

MAKE-SET(x): Create a single ton list in time ©(1)

(@
i $2

Lecture 19, 29.04.2025

Make-Set and Find

MAKE-SET(x): Create a single ton list in time ©(1)

FIND(x): follow the pointer back to the list object, and then follow the
head pointer to the representative (time ©(1))

(@
i $2

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.

@
Sy $2

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.
> If appending a large list onto a small list, it can take a while

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.
> If appending a large list onto a small list, it can take a while

Operation Number of objects updated
MAKE-SET(x1) 1
MAKE-SET(x2) 1

MAKE-SET(xp)
UNION(x2, x1)
UNION(x3, x2)
UNION(x4, X3)

UNION(Xp, Xp—1) n—1

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

2 Weighted-union heuristic Always append the smaller list to the
larger list (break ties arbitrarily)

Lecture 19, 29.04.2025

Union

A couple of ways of doing it

2 Weighted-union heuristic Always append the smaller list to the
larger list (break ties arbitrarily)

With weighted-union heuristic, a sequence of m operations on n elements
take O(m+ nlog n) time.

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAKE-SET and FIND still takes constant time.

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

Lecture 19, 29.04.2025

union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time
times updated size of resulting set
1 >2

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time
times updated size of resulting set
1 >2
2 >4

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated size of resulting set

1 >2
2 >4
3 >8

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated size of resulting set

1 >2
2 >4
3 >8

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated size of resulting set

1 >2
2 >4
3 >8
k > 2k

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated size of resulting set

1 >2
2 >4
3 >8
k > 2k

Lecture 19, 29.04.2025

Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated size of resulting set

1 >2
2 >4
3 >8
k > 2k
logn >n

Lecture 19, 29.04.2025

-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each
time

times updated size of resulting set

1 >2
2 >4
3 >8
k > 2k
logn >n

Therefore, each representative is updated < log n times
Lecture 19, 29.04.2025

Disjoint-set forest

Lecture 19, 29.04.2025

Forest of trees

> One tree per set. Root is representative

> Each node only points to its parent

Lecture 19, 29.04.2025

Forest of trees

> One tree per set. Root is representative
> Each node only points to its parent

MAKE-SET(x): Make a single-node tree

Lecture 19, 29.04.2025

Forest of trees

> One tree per set. Root is representative
> Each node only points to its parent

MAKE-SET(x): Make a single-node tree

FIND(x): follow pointers to the root

()

Lecture 19, 29.04.2025

Forest of trees

> One tree per set. Root is representative
> Each node only points to its parent

MAKE-SET(x): Make a single-node tree
FIND(x): follow pointers to the root

UNION(x, y): make one root a child of another

Lecture 19, 29.04.2025

Great heuristics

Union by rank: make the root of the smaller tree a child of the root of
the larger tree

Lecture 19, 29.04.2025

Great heuristics

Union by rank: make the root of the smaller tree a child of the root of
the larger tree

> Don't actually use size
> Use rank, which is an upper bound on height of node

> Make the root with the smaller rank a child of the root with the
larger rank

Lecture 19, 29.04.2025

Great heuristics

Union by rank: make the root of the smaller tree a child of the root of
the larger tree

> Don't actually use size
> Use rank, which is an upper bound on height of node

> Make the root with the smaller rank a child of the root with the
larger rank

Path compression: Find path = nodes visited during FIND on the trip
to the root, make all nodes on the find path direct children to root.

@ & " @ ()

(b)

Lecture 19, 29.04.2025

Pseudocode of MAKE-SET and FIND-SET

MAKE-SET(x)

1. x.p=x
2. x.rank =0

Lecture 19, 29.04.2025

Pseudocode of MAKE-SET and FIND-SET

MAKE-SET(x) FIND-SET(x)

Lif x #x.p
1 xp=x 2. x.p = FIND-SET(x.p)
2. x.rank =0 3. return x.p

Lecture 19, 29.04.2025

Pseudocode of UNION

UNION(x, y)
1. LINk(FIND-SET(x), FIND-SET(y))

Lecture 19, 29.04.2025

Pseudocode of UNION

UNION(x, y)
1. LINk(FIND-SET(x), FIND-SET(y))

LiNK(x,y)

1. if x.rank > y.rank

2. y.p=x

3. else x.p=y

4. if x.rank == y.rank

5. y.rank = y.rank + 1

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))
where «(n) is an extremely slowly growing function:

n a(n)

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))
where «(n) is an extremely slowly growing function:

n a(n)
0-2 0

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
3 1

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
3 1
4-7 2

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
3 1
4-7 2
8 — 2047 3

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0—-2 0
3 1
4 -7 2
8 — 2047 3
2047— > 108 4

Lecture 19, 29.04.2025

If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0—-2 0
3 1
4 -7 2
8 — 2047 3
2047— > 108 4

> «a(n) <5 for any practical purpose
> The bound O(m - a(n)) is tight

Lecture 19, 29.04.2025

Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

Lecture 19, 29.04.2025

Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements

» < V 4 3E operations on Union-Find data structure

Lecture 19, 29.04.2025

Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements
» < V 4 3E operations on Union-Find data structure

> Total running time if implemented as linked list with
weighted-union heuristic

Lecture 19, 29.04.2025

Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

> V elements
» < V 4 3E operations on Union-Find data structure
> Total running time if implemented as linked list with
weighted-union heuristic
O(VlogV +E)

Lecture 19, 29.04.2025

Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements

\4

< V + 3E operations on Union-Find data structure

v

Total running time if implemented as linked list with
weighted-union heuristic

O(VlogV +E)

v

Total running time if implemented as forest with union-by-rank and
path-compression

Lecture 19, 29.04.2025

Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements
» < V 4 3E operations on Union-Find data structure

> Total running time if implemented as linked list with
weighted-union heuristic

O(VlogV +E)

> Total running time if implemented as forest with union-by-rank and
path-compression

O((V + E)a(V)) ~ O(V + E)

Lecture 19, 29.04.2025

MINIMUM SPANNING TREES

Lecture 19, 29.04.2025

Origin of today's lecture

Otakar Boruvka (1926)
> Electrical power company in western Moravia in Brno
> Most economical construction of electrical power network

> Concrete engineering problem led to what is now a cornerstone
problem-solving model in combinatorial optimization

Lecture 19, 29.04.2025

A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

Lecture 19, 29.04.2025

A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

)

TN T
<A N

\

Lecture 19, 29.04.2025

A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

AR
NVANI g

Acyclic, but not connected

Lecture 19, 29.04.2025

A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

b 8 () 8 3
10 7f\ 2
G(9 ;(5 9 >D
3 3

A

G 1 f 6 h

Connected, but not acyclic

Lecture 19, 29.04.2025

A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

b (@) g

AN
A

G 1 f 6 h

Acyclic and connected = spanning tree

Lecture 19, 29.04.2025

Minimum spanning tree (MST)

INPUT: an undirected graph G = (V, E) with weight w(u, v) for
each edge (u,v) € E

OUTPUT: a spanning tree of minimum total weight

TN
LA

12

Lecture 19, 29.04.2025

Minimum spanning tree (MST)

INPUT: an undirected graph G = (V, E) with weight w(u, v) for
each edge (u,v) € E

OUTPUT: a spanning tree of minimum total weight

R
@<\L/G< \l/>0

Spanning tree of weight 10+ 8 +1+3+8+5+6+2 =43

Lecture 19, 29.04.2025

EXAMPLE APPLICATIONS

Lecture 19, 29.04.2025

Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations

Lecture 19, 29.04.2025

Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations

Lecture 19, 29.04.2025

Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations

Lecture 19, 29.04.2025

Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations

Solution given by a MST on the graph

Lecture 19, 29.04.2025

Example 2: Clustering

Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges

Lecture 19, 29.04.2025

Example 2: Clustering

Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges

Lecture 19, 29.04.2025

Example 2: Clustering

; Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges

Lecture 19, 29.04.2025

Example 2: Clustering

; Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges

Note: this is a "heuristic” algorithm. Needs analysis

Lecture 19, 29.04.2025

Example 3: Dendritic structures in the brain

Lecture 19, 29.04.2025

Example 4: Phylogenetic trees

Infer evolutionary relationships among various biological species

8%
Fok < o
2t Vi
< ® g
"ot 2
4 /o
3
@ uss @ Fart
@or @0 -
@se @ ve
@rn @ orn
©cn @ nao

Lecture 19, 29.04.2025

® »

W

WALLSTREET

ALGORITHMS FOR MST

“Greed is good. Greed is right. Greed works. Greed clarifies, cuts
through and captures the essence of the evolutionary spirit.”
- Gordon Gecko

Lecture 19, 29.04.2025

Cuts

Lecture 19, 29.04.2025

> Acut (S5,V\S) is a partition of the vertices into two nonempty
disjoint sets S and V' \ S

Lecture 19, 29.04.2025

> Acut (S5,V\S) is a partition of the vertices into two nonempty
disjoint sets S and V' \ S

> A crossing edge is an edge connecting vertex S to vertex in V\ S

Lecture 19, 29.04.2025

Cut property

Consider a cut (S, V'\ S) and let
> T be a tree on S which is part of a MST
> e be a crossing edge of minimum weight

Then there is MST of G containing e and T

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f) > w(e) (actually must be equal)

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f) > w(e) (actually must be equal)
Replace f by e in MST
This gives new MST which contains T and e

Lecture 19, 29.04.2025

Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f) > w(e) (actually must be equal)
Replace f by e in MST
This gives new MST which contains T and e

Lecture 19, 29.04.2025

Vojitech Jarnik Robert Prim Edsger Dijkstra
1897 - 1970 1921- 1930 - 2002

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

AT
<A N

12

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

AT
LA N

12

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

T\
12 3 3 11
h

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

10 7 2

AN

12 3 3 11

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

8 8 g
10 7 2
9 5 9 >>
12 3 3
@ 1 6

11

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

2

e
C AN

11

Lecture 19, 29.04.2025

Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

aramN
<N

Minimum spanning tree of weight 10+8+5+6+3+1+8+2 =43

Lecture 19, 29.04.2025

Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T. Final T is MST by this result

Lecture 19, 29.04.2025

Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T. Final T is MST by this result

Base case: trivial

Singleton v is part of a
MST

Lecture 19, 29.04.2025

Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T. Final T is MST by this result

Base case: trivial

Singleton v is part of a
MST

Inductive step: use cut property

= &=

In MST by hypothesis In MST by cut property

Lecture 19, 29.04.2025

Implementation challenge

How do we find minimum crossing edge at every iteration?

Lecture 19, 29.04.2025

Implementation challenge

How do we find minimum crossing edge at every iteration?

Check all outgoing edges:
> O(E) comparisons at every iteration

> O(E V) running time in total

Lecture 19, 29.04.2025

Implementation challenge

How do we find minimum crossing edge at every iteration?

Check all outgoing edges:
> O(E) comparisons at every iteration

» O(E V) running time in total

More clever solution:

> For every node w, keep value dist(w) that measures the “distance”
of w from current tree

> When a new node u is added to tree, check whether neighbors of u
decreases their distance to tree; if so, decrease distance

> Maintain a min-priority queue for the nodes and their distances

Lecture 19, 29.04.2025

Implementation and Analysis

PRIM(G, w, 1)
0=49
for eachu € G.V
u.key = oo
u.w = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # @
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
if v e Q and w(u,v) < v.key
VT = U
DECREASE-KEY (Q, v, w(u, v))

Lecture 19, 29.04.2025

Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)

Lecture 19, 29.04.2025

Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
> Decrease key of r: O(lg V)

Lecture 19, 29.04.2025

Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
> Decrease key of r: O(lg V)

> while loop: V EXTRACT-MIN calls = O(V g V)
< E DECREASE-KEY calls = O(Elg V)

Lecture 19, 29.04.2025

Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (Q,r,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
> Decrease key of r: O(lg V)
> while loop: V EXTRACT-MIN calls = O(V g V)
< E DECREASE-KEY calls = O(Elg V)
> TotaI:O(E lg V) (can be made O(E + Vg V) with careful queue

implementation)
Lecture 19, 29.04.2025

Greedy is good (sometimes)

v

\4

Prim's algorithm

Min-priority queue for implementation

v

Next time Kruskal's algortihm

Union-Find for implementation

v

Many applications

Lecture 19, 29.04.2025

Kruskal's algorithm

KRUSKAL(G. w)
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. £ into nondecreasing order by weight w
for each (i, v) taken from the sorted st
I FIND-SET () # FIND-SET(4)
A= AUl
UNION(. v)
return A

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

b 8 () 8 3
10ﬁ 7/\ 2
RGN
12 3 3 11
c 1 \Cf/ 6 h

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

10

AT
o 1@ e
VNI

(@—s
5

7
12 3 3 11

N

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

10

N—s—(@)—s—(C
o | s &\E\f;@

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

&

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

0

b 8 8 g
10 7%\ 2
& o

11

(D)—s—C

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

&

11

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest 7 which will become MST at the end:
at each step add cheapest edge that does not create a cycle

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest 7 which will become MST at the end:
at each step add cheapest edge that does not create a cycle

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

b 8 (d) 8 3
10 7/\ 2
RGN
12 3 3 11
c I\Cf/ 6 h

Lecture 19, 29.04.2025

Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

TN
VAN

Minimum spanning tree of weight 1 +2+3+5+6+8+ 8+ 10 = 43

Lecture 19, 29.04.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Lecture 19, 29.04.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial

T is a union of singleton
vertices

Lecture 19, 29.04.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

Lecture 19, 29.04.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn’t create a cycle o

Lecture 19, 29.04.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn’t create a cycle

3. Suppose e creates a cycle with
MST

Lecture 19, 29.04.2025

Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn’t create a cycle

e
3. Suppose e creates a cycle with
MST
4. Replace an edge (with larger An MST since weight did not increase!

weight) along this cycle by e

J

Lecture 19, 29.04.2025

Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

Lecture 19, 29.04.2025

Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure

Lecture 19, 29.04.2025

Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure

Let the connected components denote sets

> Initially each singleton is a set

> When edge (u,v) is added to T, make union of the two connected
components/sets

Lecture 19, 29.04.2025

Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure

Let the connected components denote sets

> Initially each singleton is a set

> When edge (u,v) is added to T, make union of the two connected
components/sets

@j% — O

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> |nitialize A:

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop:

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

> Sort E :

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)
> First for loop: V MAKE-SETs

> Sort E: O(EIgE)

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

\4

Initialize A: O(1)

v

First for loop: V MAKE-SETSs
Sort E: O(EIgE)

Second for loop:

v

v

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

\4

Initialize A: O(1)

v

First for loop: V MAKE-SETSs
Sort E: O(EIgE)

Second for loop: O(E) FIND-SETs and UNIONs

v

v

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

> Sort E: O(EIgE)

> Second for loop: O(E) FIND-SETs and UNIONs

> Total time: O((V+ E)a(V))+ O(ElgE) = O(ElgE) = O(Elg V)

Lecture 19, 29.04.2025

Implementation and Analysis

KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

> Sort E: O(EIgE)

> Second for loop: O(E) FIND-SETs and UNIONs

> Total time: O((V+ E)a(V))+ O(ElgE) = O(ElgE) = O(Elg V)

If edges already sorted time is O(Ea(V)) which is almost linear

Lecture 19, 29.04.2025

Greedy is good (sometimes)

v

\4

Prim's algorithm

Min-priority queue for implementation

v

Kruskal's algortihm

Union-Find for implementation

v

Many applications

Lecture 19, 29.04.2025

