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Recall: The Ford-Fulkerson Method

Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal
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Start with 0-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut
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Recall: The Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut (learn the proof)
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Recall: The Ford-Fulkerson Method

Start with O-flow Max-flow
while there is an augmenting path from s to t in residual network do

> Find augmenting path
> Compute bottleneck= min capacity on path
> Increase flow on the path by the bottleneck

When finished, resulting flow is maximal

If no augmenting path exists in residual network, then Min-cut
> Find set of nodes S reachable from s in residual network
> Set T=V\S

S and T define a minimum cut

Max-flow = Min-cut (learn the proof)

Gives a way to verify that the step-by-step calculations of the flow are correct!
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
4

. return f

Gand f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy
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FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
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3. augment flow f along p

4. return f

G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network G

3. augment flow f along p
4. return f
G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p

4. return f

Gand f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
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Gand f
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FORD-FULKERSON-METHOD(G, s, t):
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4. return f
G and f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p

4. return f

G and f Gy
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G
3. augment flow f along p
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
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3. augment flow f along p
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0
2. while exists an augmenting path p in the residual network G¢
3. augment flow f along p
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

1. Initialize flow f to 0

2. while exists an augmenting path p in the residual network Gy
3. augment flow f along p
4

. return f

Gand f
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The Ford-Fulkerson Method'54

FORD-FULKERSON-METHOD(G, s, t):

. Initialize flow f to 0

1

2. while exists an augmenting path p in the residual network Gf |No augmenting path, flow of
value 29 and cut of capacity 29
3. augment flow f along p
4

. return f @

Gand f
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Might not terminate. However, if we either take the shortest path or the
fattest path then this will not happen if the capacities are integers
without proof
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Might not terminate. However, if we either take the shortest path or the
fattest path then this will not happen if the capacities are integers
without proof

Augmenting path Number of iterations

BFS shortest path < 1 E.-V
-2
Fattest path < E-log(E- V)
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Might not terminate. However, if we either take the shortest path or the
fattest path then this will not happen if the capacities are integers
without proof

Augmenting path Number of iterations

BFS shortest path < EE %
-2
Fattest path < E-log(E- V)

» U is the maximum flow value

> Fattest path: choose augmenting path with largest minimum

capacity (bottleneck
Lecture 19, 29.04.9025 y ( )



APPLICATIONS OF MAX-FLOW
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Bipartite matching

> N students apply for M jobs
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Bipartite matching

> N students apply for M jobs
> Each get several offers
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Bipartite matching

> N students apply for M jobs
> Each get several offers
> |s there a way to match all students to jobs? obviously M has to be at least equal to N
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Bipartite matching as flow problem
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Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
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Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one
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Bipartite matching as flow problem

> Add source s and sink t with edges from s to students and from jobs to t
> All edges have capacity one
> Direction is from left to right
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete
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Bipartite matching as flow problem

» Run the Ford-Fulkerson method

> Matching is complete
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Why does it work?

Every matching defines a flow of value equal to the number of edges in
matching

> Put flow 1 on

> Edges of the matching
> Edges from s to matched student nodes
> Edges from matched job nodes to t

> Put flow 0 on all other edges

Works because flow conservation is equivalent to: no student is matched
more than once, no job is matched more than once
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Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node
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Why does it work?

Every flow during the algorithm defines a matching of size equal to its
value

> Flows obtained by Ford-Fulkerson are integer valued if capacities
are integral, so value on every edge is 0 or 1

> Edges between students and jobs with flow 1 are a matching by
flow conservation

> There cannot be more than one edge with flow 1 from a student node
> There cannot be more than one edge with flow 1 into a job node

So, maximum flow is a maximum matching!
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vy v.vvY

You want to travel to a nice location these winter holidays
You need to drive from Lausanne to Geneva airport
Winter season = risk that roads are closed

How many different routes can you take that does not share a common road?




vy v.vvY

s = Lausanne
t = Geneva airport
An edge capacity of 1 in both directions for each road

(make anti-parallel using gadgets)




> max-flow = # edge-disjoint paths

> min-cut = min #roads to be closed so that there is no route from Lausanne to
Geneva airport




DATA STRUCTURES FOR DISJOINT SETS
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Disjoint-set data structures

> Also known as “union find"”

> Maintain collection S = {51, ..., Sk} of disjoint dynamic (changing
over time) sets

> Each set is identified by a representative, which is some member of
the set

Doesn’t matter which member is the representative, as long as if we ask for the
representative twice without modifying the set, we get the same answer both
times

Lecture 19, 29.04.2025



Lecture 19, 29.04.2025



MAKE-SET(x): make a new set S; = {x}, and add S; to S
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MAKE-SET(x): make a new set S; = {x}, and add S; to S

UNION(x, y): if x € Sy,y € S, then S =S — S, — S, U{S, US,}

> Representative of new set is any member in S, U S, often the
representative of one of S, and S,

> Destroys S, and S, (since sets must be disjoint)
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MAKE-SET(x): make a new set S; = {x}, and add S; to S

UNION(x, y): if x € Sy,y € S, then S =S — S, — S, U{S, US,}

> Representative of new set is any member in S, U S, often the
representative of one of S, and S,

> Destroys S, and S, (since sets must be disjoint)

FIND(x): return representative of set containing x
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Example application: connected components

For a graph G = (V, E), vertices u, v are in same connected component
if and only if there is a path between them.

> Connected components partition vertices into equivalence classes
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CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

N <
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CONNECTED-COMPONENTS (G)
Connected components for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E

if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

S

Se
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CONNECTED-COMPONENTS (G)
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Linked list representation
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List representation

> Each set is a single linked list represented by a set object that has

> a pointer to the head of the list (assumed to be the representative
> a pointer to the tail of the list

> Each object in the list has attributes for the set member, pointer to
the set object and next

(@
i $2
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Make-Set and Find

@
Sy $2
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Make-Set and Find

MAKE-SET(x): Create a single ton list in time ©(1)

(@
i $2
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Make-Set and Find

MAKE-SET(x): Create a single ton list in time ©(1)

FIND(x): follow the pointer back to the list object, and then follow the
head pointer to the representative (time ©(1))

(@
i $2
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Union

A couple of ways of doing it
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Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.

@
Sy $2
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Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.
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Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.
> If appending a large list onto a small list, it can take a while
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Union

A couple of ways of doing it

1 Append y's list onto the end of x’s list. Use x's tail pointer to find
the end.

> Need to update the pointer back to the set object for every node on y's
list.
> If appending a large list onto a small list, it can take a while

Operation Number of objects updated
MAKE-SET(x1) 1
MAKE-SET(x2) 1

MAKE-SET(xp)
UNION(x2, x1)
UNION(x3, x2)
UNION(x4, X3)

UNION(Xp, Xp—1) n—1
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Union

A couple of ways of doing it
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Union

A couple of ways of doing it

2 Weighted-union heuristic Always append the smaller list to the
larger list (break ties arbitrarily)
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Union

A couple of ways of doing it

2 Weighted-union heuristic Always append the smaller list to the
larger list (break ties arbitrarily)

With weighted-union heuristic, a sequence of m operations on n elements
take O(m+ nlog n) time.
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAKE-SET and FIND still takes constant time.
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time
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union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time
times updated  size of resulting set
1 >2
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time
times updated  size of resulting set
1 >2
2 >4
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated  size of resulting set

1 >2
2 >4
3 >8
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take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated  size of resulting set

1 >2
2 >4
3 >8
k > 2k
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated  size of resulting set

1 >2
2 >4
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Weighted-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each

time

times updated  size of resulting set

1 >2
2 >4
3 >8
k > 2k
logn >n
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-union heuristic

With weighted-union heuristic, a sequence of m operations on n elements
take O(m + nlg n) time.

Proof sketch MAkE-SET and FIND still takes constant time. How many times can
each objects’ representative pointer be updated? It must be in the smaller set each
time

times updated  size of resulting set

1 >2
2 >4
3 >8
k > 2k
logn >n

Therefore, each representative is updated < log n times
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Disjoint-set forest
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Forest of trees

> One tree per set. Root is representative

> Each node only points to its parent
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Forest of trees

> One tree per set. Root is representative
> Each node only points to its parent

MAKE-SET(x): Make a single-node tree
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Forest of trees

> One tree per set. Root is representative
> Each node only points to its parent

MAKE-SET(x): Make a single-node tree

FIND(x): follow pointers to the root

()
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Forest of trees

> One tree per set. Root is representative
> Each node only points to its parent

MAKE-SET(x): Make a single-node tree
FIND(x): follow pointers to the root

UNION(x, y): make one root a child of another
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Great heuristics

Union by rank: make the root of the smaller tree a child of the root of
the larger tree
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Great heuristics

Union by rank: make the root of the smaller tree a child of the root of
the larger tree

> Don't actually use size
> Use rank, which is an upper bound on height of node

> Make the root with the smaller rank a child of the root with the
larger rank
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Great heuristics

Union by rank: make the root of the smaller tree a child of the root of
the larger tree

> Don't actually use size
> Use rank, which is an upper bound on height of node

> Make the root with the smaller rank a child of the root with the
larger rank

Path compression: Find path = nodes visited during FIND on the trip
to the root, make all nodes on the find path direct children to root.

@ & " @ ()

(b)
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Pseudocode of MAKE-SET and FIND-SET

MAKE-SET(x)

1. x.p=x
2. x.rank =0
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Pseudocode of MAKE-SET and FIND-SET

MAKE-SET(x) FIND-SET(x)

Lif x #x.p
1 xp=x 2. x.p = FIND-SET(x.p)
2. x.rank =0 3. return x.p
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Pseudocode of UNION

UNION(x, y)
1. LINk(FIND-SET(x), FIND-SET(y))
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Pseudocode of UNION

UNION(x, y)
1. LINk(FIND-SET(x), FIND-SET(y))

LiNK(x,y)

1. if x.rank > y.rank

2. y.p=x

3. else x.p=y

4. if x.rank == y.rank

5. y.rank = y.rank + 1
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If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:
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If use both union by rank and path compression,
O(m - a(n))
where «(n) is an extremely slowly growing function:

n a(n)
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If use both union by rank and path compression,
O(m - a(n))
where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
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If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
3 1
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If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
3 1
4-7 2
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If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0-2 0
3 1
4-7 2
8 — 2047 3
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If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0—-2 0
3 1
4 -7 2
8 — 2047 3
2047— > 108 4
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If use both union by rank and path compression,
O(m - a(n))

where «(n) is an extremely slowly growing function:

n a(n)
0—-2 0
3 1
4 -7 2
8 — 2047 3
2047— > 108 4

> «a(n) <5 for any practical purpose
> The bound O(m - a(n)) is tight
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Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)
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Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements

» < V 4 3E operations on Union-Find data structure
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>V elements
» < V 4 3E operations on Union-Find data structure

> Total running time if implemented as linked list with
weighted-union heuristic
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Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

> V elements
» < V 4 3E operations on Union-Find data structure
> Total running time if implemented as linked list with
weighted-union heuristic
O(VlogV +E)
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Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements

\4

< V + 3E operations on Union-Find data structure

v

Total running time if implemented as linked list with
weighted-union heuristic

O(VlogV +E)

v

Total running time if implemented as forest with union-by-rank and
path-compression

Lecture 19, 29.04.2025



Running time of connected components

CONNECTED-COMPONENTS (G)

for each vertex v € G.V
MAKE-SET(v)
for each edge (u,v) € G.E
if FIND-SET(u) # FIND-SET(v)
UNION(u, v)

>V elements
» < V 4 3E operations on Union-Find data structure

> Total running time if implemented as linked list with
weighted-union heuristic

O(VlogV +E)

> Total running time if implemented as forest with union-by-rank and
path-compression

O((V + E)a(V)) ~ O(V + E)
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MINIMUM SPANNING TREES
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Origin of today's lecture

Otakar Boruvka (1926)
> Electrical power company in western Moravia in Brno
> Most economical construction of electrical power network

> Concrete engineering problem led to what is now a cornerstone
problem-solving model in combinatorial optimization
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A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)
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A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

)
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A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

AR
NVANI g

Acyclic, but not connected
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A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

b 8 () 8 3
10 7f\ 2
G( 9 ;( 5 9 >D
3 3

A

G 1 f 6 h

Connected, but not acyclic
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A spanning tree of a graph

A set T of edges that is
> Acyclic

> Spanning (connects all vertices)

b (@) g

AN
A

G 1 f 6 h

Acyclic and connected = spanning tree
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Minimum spanning tree (MST)

INPUT: an undirected graph G = (V, E) with weight w(u, v) for
each edge (u,v) € E

OUTPUT: a spanning tree of minimum total weight

TN
LA

12
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Minimum spanning tree (MST)

INPUT: an undirected graph G = (V, E) with weight w(u, v) for
each edge (u,v) € E

OUTPUT: a spanning tree of minimum total weight

R
@<\L/G< \l/>0

Spanning tree of weight 10+ 8 +1+3+8+5+6+2 =43
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EXAMPLE APPLICATIONS
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Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations
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Example 1: Communication networks
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various locations
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Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations
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Example 1: Communication networks

A multinational company wants to lease communication lines between its
various locations

Solution given by a MST on the graph
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Example 2: Clustering

Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges
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; Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges
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Example 2: Clustering

; Edge weights equal to
distance of nodes

Find: “cluster” of nodes Possible solution: Find MST. Eliminate “fat” edges

Note: this is a "heuristic” algorithm. Needs analysis
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Example 3: Dendritic structures in the brain

Lecture 19, 29.04.2025



Example 4: Phylogenetic trees

Infer evolutionary relationships among various biological species

8%
Fok < o
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@rn @ orn
©cn @ nao
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ALGORITHMS FOR MST

“Greed is good. Greed is right. Greed works. Greed clarifies, cuts
through and captures the essence of the evolutionary spirit.”
- Gordon Gecko
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Cuts
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> Acut (S5,V\S) is a partition of the vertices into two nonempty
disjoint sets S and V' \ S
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> Acut (S5,V\S) is a partition of the vertices into two nonempty
disjoint sets S and V' \ S

> A crossing edge is an edge connecting vertex S to vertex in V\ S
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Cut property

Consider a cut (S, V'\ S) and let
> T be a tree on S which is part of a MST
> e be a crossing edge of minimum weight

Then there is MST of G containing e and T
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Cut property

Proof. If e is already in MST we are done.
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Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
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Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
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Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f) > w(e) (actually must be equal)
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Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f) > w(e) (actually must be equal)
Replace f by e in MST
This gives new MST which contains T and e

Lecture 19, 29.04.2025



Cut property

Proof. If e is already in MST we are done.
Otherwise add e to the MST
This creates a cycle
At least one other crossing edge f in cycle
w(f) > w(e) (actually must be equal)
Replace f by e in MST
This gives new MST which contains T and e
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Vojitech Jarnik Robert Prim Edsger Dijkstra
1897 - 1970 1921- 1930 - 2002



Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

AT
<A N

12
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to the cut induced by T
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

T\
12 3 3 11
h
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

10 7 2

AN

12 3 3 11
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

8 8 g
10 7 2
9 5 9 >>
12 3 3
@ 1 6

11
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

2

e
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Prim’s algorithm

Start with any vertex v, set tree T to singleton v

Greedily grow tree T:
at each step add to T a minimum weight crossing edge with respect
to the cut induced by T

aramN
<N

Minimum spanning tree of weight 10+8+5+6+3+1+8+2 =43
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Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T. Final T is MST by this result
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Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T. Final T is MST by this result

Base case: trivial

Singleton v is part of a
MST
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Why does it work?

T is always a subtree of a MST

Proof by induction on number of nodes in T. Final T is MST by this result

Base case: trivial

Singleton v is part of a
MST

Inductive step: use cut property

= &=

In MST by hypothesis In MST by cut property
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Implementation challenge

How do we find minimum crossing edge at every iteration?
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Implementation challenge

How do we find minimum crossing edge at every iteration?

Check all outgoing edges:
> O(E) comparisons at every iteration

> O(E V) running time in total
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Implementation challenge

How do we find minimum crossing edge at every iteration?

Check all outgoing edges:
> O(E) comparisons at every iteration

» O(E V) running time in total

More clever solution:

> For every node w, keep value dist(w) that measures the “distance”
of w from current tree

> When a new node u is added to tree, check whether neighbors of u
decreases their distance to tree; if so, decrease distance

> Maintain a min-priority queue for the nodes and their distances
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Implementation and Analysis

PRIM(G, w, 1)
0=49
for eachu € G.V
u.key = oo
u.w = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # @
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
if v e Q and w(u,v) < v.key
VT = U
DECREASE-KEY (Q, v, w(u, v))
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Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
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Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
> Decrease key of r: O(lg V)
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Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (0, 1,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
> Decrease key of r: O(lg V)

> while loop: V EXTRACT-MIN calls = O(V g V)
< E DECREASE-KEY calls = O(Elg V)
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Implementation and Analysis

PRIM(G, w, 1)
0=0
for eachu € G.V
u.key = oo
u.m = NIL
INSERT(Q, u)
DECREASE-KEY (Q,r,0) / r.key =0
while Q # ¢
u = EXTRACT-MIN(Q)
for each v € G.Adj[u]
ifve Q and w(u,v) < v.key
VT =U
DECREASE-KEY (Q, v, w(u, v))

> Initialize Q and first for loop: O(V'Ig V)
> Decrease key of r: O(lg V)
> while loop: V EXTRACT-MIN calls = O(V g V)
< E DECREASE-KEY calls = O(Elg V)
> TotaI:O(E lg V) (can be made O(E + Vg V) with careful queue

implementation)
Lecture 19, 29.04.2025



Greedy is good (sometimes)

v

\4

Prim's algorithm

Min-priority queue for implementation

v

Next time Kruskal's algortihm

Union-Find for implementation

v

Many applications
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Kruskal's algorithm

KRUSKAL(G. w)
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. £ into nondecreasing order by weight w
for each (i, v) taken from the sorted st
I FIND-SET () # FIND-SET(4)
A= AUl
UNION(. v)
return A
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

b 8 () 8 3
10ﬁ 7/\ 2
RGN
12 3 3 11
c 1 \Cf/ 6 h
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

10
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12 3 3 11
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

10
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

&
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

0
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest 7 which will become MST at the end:
at each step add cheapest edge that does not create a cycle
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest 7 which will become MST at the end:
at each step add cheapest edge that does not create a cycle
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

b 8 (d) 8 3
10 7/\ 2
RGN
12 3 3 11
c I\Cf/ 6 h
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Kruskal's algorithm

Start from empty forest T

Greedily maintain forest T which will become MST at the end:
at each step add cheapest edge that does not create a cycle

TN
VAN

Minimum spanning tree of weight 1 +2+3+5+6+8+ 8+ 10 = 43
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial

T is a union of singleton
vertices
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn’t create a cycle o
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn’t create a cycle

3. Suppose e creates a cycle with
MST
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Why does it work?

Claim: T is always a sub-forest of a MST

Proof by induction on the number of components/edges in T

Base case: trivial
T is a union of singleton
vertices

Inductive step:

1. By hypothesis, current T is a sub-
forest of a MST,

2. Edge eis an edge of minimum
weight that doesn’t create a cycle

e
3. Suppose e creates a cycle with
MST
4. Replace an edge (with larger An MST since weight did not increase!

weight) along this cycle by e

J
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Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle
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Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure
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Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure

Let the connected components denote sets

> Initially each singleton is a set

> When edge (u,v) is added to T, make union of the two connected
components/sets
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Implementation challenge

In each iteration, we need to check whether cheapest edge creates a cycle

This is the same thing as checking whether its endpoints belong to the
same component = use disjoint sets (union-find) data structure

Let the connected components denote sets

> Initially each singleton is a set

> When edge (u,v) is added to T, make union of the two connected
components/sets

@j% — O
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> |nitialize A:
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop:
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

> Sort E :
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G. E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)
> First for loop: V MAKE-SETs

> Sort E: O(EIgE)
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Implementation and Analysis

KRUSKAL(G, w)
A=0
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

\4

Initialize A: O(1)

v

First for loop: V MAKE-SETSs
Sort E: O(EIgE)

Second for loop:

v

v
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Implementation and Analysis

KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

\4

Initialize A: O(1)

v

First for loop: V MAKE-SETSs
Sort E: O(EIgE)

Second for loop: O(E) FIND-SETs and UNIONs

v

v
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Implementation and Analysis

KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

> Sort E: O(EIgE)

> Second for loop: O(E) FIND-SETs and UNIONs

> Total time: O((V+ E)a(V))+ O(ElgE) = O(ElgE) = O(Elg V)
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Implementation and Analysis

KRUSKAL(G, w)
A=90
for each vertex v € G.V
MAKE-SET(v)
sort the edges of G.E into nondecreasing order by weight w
for each (u, v) taken from the sorted list
if FIND-SET (1) # FIND-SET(v)
A= AU{(u.v)}
UNION(u, v)
return A

> Initialize A: O(1)

> First for loop: V MAKE-SETs

> Sort E: O(EIgE)

> Second for loop: O(E) FIND-SETs and UNIONs

> Total time: O((V+ E)a(V))+ O(ElgE) = O(ElgE) = O(Elg V)

If edges already sorted time is O(Ea(V)) which is almost linear
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Greedy is good (sometimes)

v

\4

Prim's algorithm

Min-priority queue for implementation

v

Kruskal's algortihm

Union-Find for implementation

v

Many applications
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